Testicular Translocator Protein Expression is Differentially Altered by Synthetic Cannabinoid HU210 in Adult and Adolescent Rats
نویسندگان
چکیده
Objective: The translocator protein (TSPO) has been implicated in numerous functions including steroid production and regulation of stress and anxiety. Cannabinoids have been shown to reduce plasma testosterone levels and alter anxiety levels. The aim of the present study was to determine whether the synthetic cannabinoid HU210 is able to regulate TSPO expression in several peripheral organs. Methods: HU210 (100 μg/kg) was administered intraperitoneally to both adult and adolescent male ratsfor 14 days. TSPO receptor expression in several organs, including the liver, spleen, kidneys and testes, was quantified by membrane receptor binding using the selective radiolig and, PK11195. In cases where receptor binding data indicated significant cannabinoid-induced differences, further RT-qPCR was carried out to determine the transcriptional regulation of the TSPO gene. Additionally, film-autography was used to identify potential changes in the spatial distribution of the TSPO tissue binding sites. Results: Results indicate that HU210 induces significant reductions in testicular TSPO expression in adult but not adolescent rats. No changes were found in other organs examined. These results are consistent with the previously observed effects of cannabinoids on testosterone production and a presumed role for TSPO in steroidogenesis. Conclusions: Overall, these results suggest that cannabinoids may alter testosterone production by altering the expression of testicular TSPO and that the alteration of TSPO occurs in an age-dependent manner.
منابع مشابه
Effect of Sulpiride on Translocator Protein (TSPO) Gene Expression and Histomorphometric Indices in the Testis of Rats under Physical or Psychological Stress
Introduction: It is well established that stress or the use of sulpiride, an antipsychotic, disrupts the reproductive system. Translocator protein (TSPO) in the mitochondrial membrane of steroidogenic tissues, such as gonads, is involved in the regulation of steroid hormone production by transporting cholesterol into the mitochondria. The present study aimed to investigate the effects of stress...
متن کاملEffect of synthetic cannabinoid HU210 on memory deficits and neuropathology in Alzheimer's disease mouse model.
Cannabinoids have been shown to increase neurogenesis in adult brain, as well as protect neurons from excitotoxicity, calcium influx, inflammation, and ischemia. Recent studies have shown that synthetic cannabinoids can alleviate water maze impairments in rats treated with intracranial amyloid beta protein (Abeta); however it is unknown whether this effect is due to the cannabinoids' anti-infla...
متن کاملSynergistic Effect between Maternal Infection and Adolescent Cannabinoid Exposure on Serotonin 5HT1A Receptor Binding in the Hippocampus: Testing the “Two Hit” Hypothesis for the Development of Schizophrenia
Infections during pregnancy and adolescent cannabis use have both been identified as environmental risk factors for schizophrenia. We combined these factors in an animal model and looked at their effects, alone and in combination, on serotonin 5HT1A receptor binding (5HT1AR) binding longitudinally from late adolescence to adulthood. Pregnant rats were exposed to the viral mimic poly I:C on embr...
متن کاملThe synthetic cannabinoid HU210 induces spatial memory deficits and suppresses hippocampal firing rate in rats.
BACKGROUND AND PURPOSE Previous work implied that the hippocampal cannabinoid system was particularly important in some forms of learning, but direct evidence for this hypothesis is scarce. We therefore assessed the effects of the synthetic cannabinoid HU210 on memory and hippocampal activity. EXPERIMENTAL APPROACH HU210 (100 microg kg(-1)) was administered intraperitoneally to rats under thr...
متن کاملCannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects.
The hippocampal dentate gyrus in the adult mammalian brain contains neural stem/progenitor cells (NS/PCs) capable of generating new neurons, i.e., neurogenesis. Most drugs of abuse examined to date decrease adult hippocampal neurogenesis, but the effects of cannabis (marijuana or cannabinoids) on hippocampal neurogenesis remain unknown. This study aimed at investigating the potential regulatory...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014